A Priori Estimates and Existence for a Class of Fully Nonlinear Elliptic Equations in Conformal Geometry
نویسنده
چکیده
In this paper we prove the interior gradient and second derivative estimates for a class of fully nonlinear elliptic equations determined by symmetric functions of eigenvalues of the Ricci or Schouten tensors. As an application we prove the existence of solutions to the equations when the manifold is locally conformally flat or the Ricci curvature is positive. Dedicated to the memory of Professor S.S. Chern
منابع مشابه
Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملExistence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملSecond Order Estimates and Regularity for Fully Nonlinear Elliptic Equations on Riemannian Manifolds
We derive a priori second order estimates for solutions of a class of fully nonlinear elliptic equations on Riemannian manifolds under structure conditions which are close to optimal. We treat both equations on closed manifolds, and the Dirichlet problem on manifolds with boundary without any geometric restrictions to the boundary. These estimates yield regularity and existence results some of ...
متن کاملLocal Estimates for Some Fully Nonlinear Elliptic Equations
We present a method to derive local estimates for some classes of fully nonlinear elliptic equations. The advantage of our method is that we derive Hessian estimates directly from C0 estimates. Also, the method is flexible and can be applied to a large class of equations. Let (M, g) be a smooth Riemannian manifold of dimension n ≥ 2. We are interested in a priori estimates for solutions of some...
متن کاملConformal Deformations of the Smallest Eigenvalue of the Ricci Tensor
We consider deformations of metrics in a given conformal class such that the smallest eigenvalue of the Ricci tensor to be a constant. It is related to the notion of minimal volumes in comparison geometry. Such a metric with the smallest eigenvalue of the Ricci tensor to be a constant is an extremal metric of volume in a suitable sense in the conformal class. The problem is reduced to solve a P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006